

Elektro-Schwenkspanner

Flansch oben, Positions- und Spannkraftkontrolle, IO-Link-Anschluss optional Gleichspannung 24 V, minimaler Energiebedarf

Einsatz

Elektro-Schwenkspanner werden zum Spannen oder Halten von Teilen eingesetzt,

- wenn die Spann- oder Haltepunkte beim Beund Entladen der Vorrichtung frei sein sollen
- wenn bei automatisierten Anlagen eine erweiterte Funktionalität erforderlich ist
- wenn Spannelemente einzeln angesteuert werden sollen
- wo die Spannkraft auch nach Trennung von der Energiezufuhr erhalten bleiben soll

Elektro-Schwenkspanner sind deshalb besonders geeignet für:

- Verpackungsindustrie
- Prüf- und Testsysteme
- Sondermaschinen
- Montageeinrichtungen und Robotik
- Vollautomatische Fertigungssysteme
- Spannvorrichtungen mit Werkstückwechsel über Handlingsysteme

Beschreibung

Der Elektro-Schwenkspanner wird von einem verschleißfreien bürstenlosen Gleichstrommotor angetrieben. Die Motordrehzahl wird über das Getriebe und eine Gewindespindel in die Schwenk- und Hubbewegung der Kolbenstange umgewandelt. Dabei benötigt die Schwenkung des Spanneisens um 180° nur einen Axialhub von 3 mm.

Wenn das Spanneisen beim Schwenken mit einem Werkstück kollidiert, ist die Mechanik gegen Überlastung geschützt. Der Gleichstrommotor wird sofort automatisch abgeschaltet. Beim Entspannen schwenkt das Spanneisen immer wieder in die Ausgangsstellung zurück.

Integrierte Steuerung

Die elektronische Steuerung für den Gleichstrommotor ist auf einer Platine im Gehäuse des Elektro-Schwenkspanners untergebracht.

Elektrischer Anschluss

Stromversorgung und Signalaustausch zur externen Steuerung werden durch zwei kurze Kabel mit Steckverbindern übertragen. Für den kundenseitigen Anschluss stehen Kabeldosen zur Verfügung (siehe Anschlusszubehör).

Ungefährliche Berührungsspannung

Die verwendete Gleichspannung 24 V gilt als "Kleinspannung" und ist damit für Menschen bei Berührung ungefährlich.

Vorteile

- Hohe Spannkraft
- Spannkraft einstellbar
- Spannkraftkontrolle
- Einzeln oder gemeinsam ansteuerbar
- Hohe Betriebssicherheit durch selbsthemmenden Spindelantrieb
- Mechanisch nachsetzend durch Tellerfedern
- Schwenkwinkel bis 180° lieferbar
- Überlastsicherung bei Kollision mit dem Spanneisen
- Elektrische Positionskontrolle und umfangreiche Eigenkontrolle mit Diagnosemöglichkeit
- Spannwegabfrage möglich
- Kleinspannung 24 V
- Leckagefrei
- Wartungsfrei (500000 Zyklen)
- Schutzart IP67

Stromversorgung

Für Motor und elektronische Steuerung ist eine Gleichspannung von 24 V mit einer Restwelligkeit von max. 10% erforderlich.

Für den Gleichstrommotor empfehlen wir die Verwendung eines Schaltnetzteils mit einem Stromausgang entsprechend der Angaben in den technischen Daten pro angeschlossenem Schwenkspanner. Bei gleichzeitiger Betätigung mehrerer Schwenkspanner muss die Leistung entsprechend vergrößert werden.

Die elektronische Steuerung soll von einem separaten Netzteil (24 V DC/100 mA) versorgt werden.

Einstellungen

Nach Entfernen der Abdeckhaube können auf der Steuerplatine folgende Einstellungen vorgenommen werden:

- Spannkraft
- Schwenkgeschwindigkeit
- Kompensation der Spanneisenelastizität

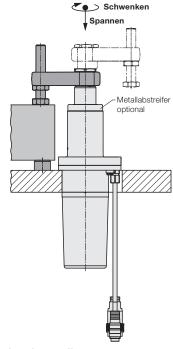
Die Spannkraft kann auch extern über einen Analogeingang eingestellt werden.

Wichtige Hinweise

Elektro-Schwenkspanner sind ausschließlich zum Spannen oder Halten von Werkstücken im industriellen Gebrauch vorgesehen. Sie können sehr hohe Spannkräfte erzeugen. Das Werkstück, die Vorrichtung oder die Maschine müssen diese Kräfte aufnehmen können.

Im Wirkungsbereich von Kolbenstange und Spanneisen besteht Quetschgefahr.

Der Hersteller der Vorrichtung oder Maschine ist verpflichtet, wirksame Schutzmaßnahmen vorzusehen.


Beim Be- und Entladen der Vorrichtung und beim Spannvorgang ist eine Kollision mit dem Spanneisen zu vermeiden.

Für das Positionieren von Werkstücken ist die zulässige Verschiebekraft nach Diagramm auf Seite 4 zu beachten.

Wenn die Gefahr besteht, dass Flüssigkeit in den Elektro-Schwenkspanner eindringt, muss am Belüftungsanschluss G 1/8 die Verschlussschraube entfernt und ein Belüftungsschlauch angeschlossen werden. Das andere Ende wird zu einer absolut trockenen Stelle verlegt.

Empfehlenswert ist die Anlage von trockener Sperrluft mit 0,2 bar.

Funktionsprinzip

Funktionskontrollen

Entspannt

• Spanneisen in Ausgangsstellung und Entspannvorgang abgeschlossen

Gespannt

- Spanneisen im Spannbereich und eingestellte Spannkraft erreicht
- Spannwegabfrage über Ausgangssignal möglich

Diagnosemöglichkeit

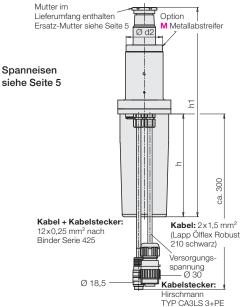
- Umfangreiche Überprüfung auf fehlerhafte Zustände
- Signalisierung durch Fehlercode (Blinksignal) intern auf Steuerplatine oder durch externes Schnittstellensignal
- Fehlermeldungen können zurückgesetzt werden
- Revisionsanzeige nach 500000 Zyklen

Eine vollständige Beschreibung finden Sie in der mitgelieferten Betriebsanleitung.

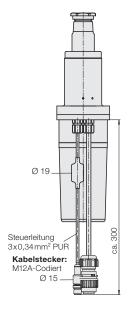
Optional mit Kabel und 4-poligem Stecker zum Anschluss an einen IO-Link-Master. Über diese Schnittstelle werden Befehle und Informationen zwischen Elektro-Schwenkspanner und einer übergeordneten Steuerung ausgetauscht.

Vorteile

- Reduzierter Verkabelungsaufwand
- Vereinfachte Inbetriebnahme
- Umfangreichere Diagnosemöglichkeiten
- Störsicherheit durch digitale Signalübertragung
- Alle Einstellungen können komfortabel über die IO-Link Schnittstelle erfolgen


Technische Information

Weitere Informationen zu Anwendung und Betriebsbedingungen sind auf Anfrage erhältlich.


Abmessungen **Technische Daten**

Ausgangsstellung für 180° Schwenkwinkel Zur Indexierung kann ein Zylinderstift eingelegt werden. Zubehör (im Lieferumfagn enthalten) Option Metallabstreifer [Ød. g Š Kabelver-問 schraubung Ø r1 M12 x 1,5 Abdeckhaube abnehmbar Steuerplatine Spanneisen kann in jeder gewünschten Stellung befestigt werden. Position Indexierstift "gespannter Zustand Spannstellung ±1° 39,5 1833 Ansicht X

183XXXXXXXX 183XXXXXXXXM

IO-Link-Anschluss 183X XXXX XXXXII 183X XXXX XXXMI

Anschlusskabel

maximal zulässige Kabellänge 30 m

für Versorgung Gle	eichstrommotor
Leitungslänge	Leitungsquerschnitt
< 12 m	2 x 1,5 mm ²
< 20 m	2 x 2,5 mm ²
< 30 m	$2 \times 4 \text{ mm}^2$

Zubehör

Steuerleitung

Kabeldose konfektionierbar 12 POL

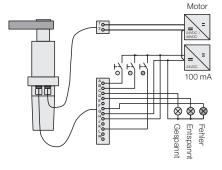
Bestell-Nr. 3141 992

Kabeldose 5 m Kabel 12 POL.

Bestell-Nr. 3823375 L 05000

Kabeldose Hirschmann CA3LD

Bestell-Nr. 3141 991


Anschlussbeispiele Minimale Konfiguration

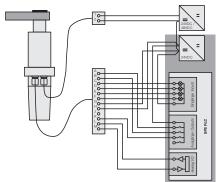
Belüftungsschraube

 $1835 = G^{1/8}$

bzw. Sperrluftanschluss

b1

Versorgungsspannung 24 VDC Motor

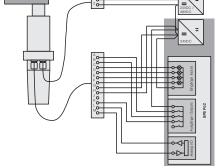

R (4x)

Speicherprogrammierbare Steuerung SPS

1835

43,4

R = max. 6



Schwenk-

kolbenachse

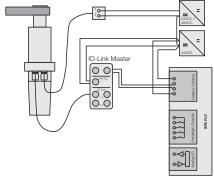
Anschlussbilder

30,5

Versorgungsspannung 24 VDC Motor

Pin Funktion

- +24 VDC
- GND (Masse)


Steuerleitung Pin Funktion

Befehl Spannen

- B Befehl Entspannen
- D
- Meldung Gespannt Meldung Entspannt Meldung Zyklenzahl Meldung Fehlercode
- E
- G GND (Masse) Н +24 VDC (Steuerung)
- Κ Befehl Fehler Reset
- Analog-Eingang Spannkraft (0–10 V) Analog-Ausgang Spannweg (0–10 V)

Aktueller Stand unter ws.roemheld.de

IO-Link Anschluss

IO-Link-Anschluss

Versorgungsspannung 24 VDC Motor

+24 VDC

GND (Masse)

Steuerleitung

- +24 VDC
- GND (Masse)
- C/Q IO-Link

+24 VDC

Steuerleitung

Pin Funktion

GND (Masse)

Befehl Spannen

Befehl Entspannen

Meldung Gespannt

Meldung Entspannt

Meldung Fehlercode

Befehl Fehler Reset

2

В

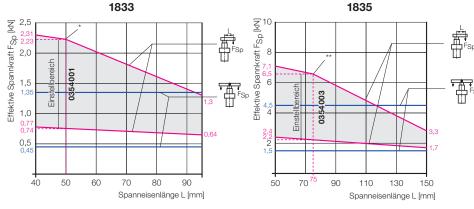
D

Abmessungen **Technische Daten**

Elektro-Schwenkspanner		1833	1835
Axiale Zugkraft einstellbar	[kN]	0,92,7	39
Effektive Spannkraft	[kN]	siehe Dia	ngramm
Zulässige Verschiebekraft	[kN]	siehe Dia	
Spannhub (nutzbar)	[mm]	13	20
Schwenkhub	[mm]	4	
Gesamthub (mechanisch)	[mm]	19	26
Schwenkwinkel	[°]	0°/90°/ 3*	
Spannzeit ca. Entspannzeit ca.	[S]	3*	
Sonderspanneisen	[s]	ა"	
Max. Abstand Kolbenachse zu Spannpunkt	t [mm]	100	150
Max. Radialmoment M1	[Nm]	0,1	0,5
Max. Trägheitsmoment	[kgm ²]	0,0012	0,008
Nennspannung	[V DC]	24	
Betriebsbereich	[V DC]	22	
Restwelligkeit	[%]	<1	
Max. Stromaufnahme	[A]	8	15
Leistungsbedarf im Standby ca.	[W]	1,2	
Einschaltdauer	[%]	25 (\$	
Schutzart	. ,	IP (
Sperrluft max.	[bar]	0,2	2
Umgebungstemperatur	[°C]	-5	
Einbaulage		bevorzugt se	enkrecht***
Masse ca.	[kg]	3,5	8
a	[mm]	39,5	50,5
b	[mm]	31,5	35,5
b1	[mm]	30,5	41,5
b2	[mm]	36,5	50
С	[mm]	46	67
c1	[mm]	11	9
c2	[mm]	24	23,5
Ød	[mm]	25	36
Ø d1	[mm]	40 s7	52 s6
Ø d2 Ø e	[mm]	42,8	58,5
f ge	[mm]	23,5 30	33,5 40
	[mm] [mm]	M18×1,5	M28×1,5
g h	[mm]	125,5	164,5
h1 +2	[mm]	259,7	336,9
j	[mm]	M5	M8
k	[mm]	60	85
i.	[mm]	85	105
m -1	[mm]	115,2	146,4
n	[mm]	38,5	45
Øp	[mm]	5,5	9
\emptyset r $-0,1$	[mm]	45	60
Ør1	[mm]	55	78
t	[mm]	9	10
V	[mm]	22,3	22
v1	[mm]	79	99,5
v2	[mm]	83,6	105
v3	[mm]	88,6	110
x +2	[mm]	134,2	172,4
У	[mm]	16,6	13,5
Bestell-Nr.			
Drehrichtung 90° rechts		1833A090R19XX	1835 C090 R 26XX
Drehrichtung 90° links		1833 A090 L 19XX	1835 C090 L26XX
Drehrichtung 180° rechts		1833 A180 R 19XX	1835 C180 R26XX
Drehrichtung 180° links 0° Grad		1833 A180 L 19XX 1833 A000 0 19XX	1835 C180 L 26XX 1835 C000 0 26XX
U Grau			1000 00000 2011
		XX = Optionen	
		OI = IO-Link M = Metallabst	roifor
		M = MetallabstMI = Metallabst	
		- Metallabst	IOIOI I IO LIIR

* Andere Schwenkwinkel auf Anfrage lieferbar (min. 45°)
 ** Weitere technische Informationen auf Anfrage erhältlich
 *** Bei horizontaler Einbaulage beachten Sie bitte Seite 5

Wichtiger Hinweis


Um eine prozesssichere Applikation zu gewährleisten, müssen alle technischen Anforderungen

und Rahmenbedingungen sorgfältig geprüft werden. Hierzu bitte Kontakt zu unseren technischen Beratern aufnehmen (vor Ort oder direkt im Produktmanagement, Tel.: +49 6405 89456).

Effektive Spannkraft FSp in Abhängigkeit der Spanneisenlänge L

Die effektive Spannkraft wird mit zunehmender Spanneisenlänge kleiner. Außerdem muss bei längeren Spanneisen die Spannkraft reduziert werden, damit das zulässige Biegemoment nicht überschritten wird.

Die Einstellung der Spannkraft erfolgt auf der Steuerplatine oder extern über den analogen Eingang L. Die Werkseinstellung ist passend für das jeweilige Zubehör-Spanneisen mit Druckschraube.

^{*} Bei Spanneisenlängen > 50 mm bitte die zulässigen Einstellparameter der effektiven Spannkraft nach Betriebsanleitung berücksichtigen.

** Bei Spanneisenlängen > 75 mm bitte die zulässigen Einstell-parameter der effektiven Spannkraft nach Betriebsanleitung berücksichtigen.

Beispiel

Zubehör-Spanneisen 0354001: L = 50 mm Nach Diagramm:

max. Spannkraft

2,2 kN min. Spannkraft 0,74 kN

Die Spannkraft ist stufenlos verstellbar.

Beispiel

Zubehör-Spanneisen 0354003: I = 75 mmNach Diagramm:

> max. Spannkraft 6,5 kN min. Spannkraft 2,2 kN

Die Spannkraft ist stufenlos verstellbar.

Zulässige Verschiebekraft F_V für das horizontale Positionieren eines Werkstücks

Der Elektro-Schwenkspanner kann ein Werkstück noch vor Aufbau der vollen Spannkraft gegen Festpunkte schieben, also positionieren.

Die zulässige Verschiebekraft ist von der eingestellten Spannkraft und der Länge des Spanneisens abhängig. Sie beträgt 15 % der eingestellten Spannkraft.

Es wird ein Spanneisen mit 50 mm Achsabstand zum Spannpunkt verwendet. Der Trimmer F ist auf 9 eingestellt. Die Einstellung von Trimmer E ist für die Berechnung der Verschiebekraft nicht relevant. Nach dem Spannkraftdiagramm erhält man eine effektive Spannkraft am Spannpunkt von 2,2 kN. Die zulässige Verschiebekraft F_V beträgt damit:

Es wird ein Spanneisen mit 75 mm Achsabstand zum Spannpunkt verwendet. Der Trimmer F ist auf 9 eingestellt. Die Einstellung von Trimmer E ist für die Berechnung der Verschiebekraft nicht relevant. Nach dem Spannkraftdiagramm erhält man eine effektive Spannkraft am Spannpunkt von 6,5 kN. Die zulässige Verschiebekraft F_V beträgt damit:

$$F_V = F_{Sp} * 15\% = 2.2 \text{ kN} * 0.15 = 0.33 \text{ kN}$$

$$F_V = F_{Sp} * 15\% = 6.5 \text{ kN} * 0.15 = 0.98 \text{ kN}$$

Beispiel

Zubehör-Spanneisen 0354001: L = 50 mm Nach Diagramm:

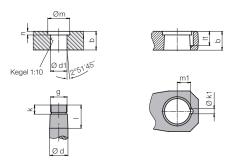
> max. Spannkraft 2,2 kN Verschiebekraft F_V 0,33 kN

Bei einem Reibungskoeffizienten $\mu = 0,4$ reicht das für eine Werkstückmasse m:

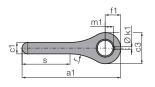
$$m = \frac{F_V}{g * \mu} = \frac{330 \text{ N}}{9.81 * 0.4} = 84 \text{ kg}$$

Beispiel

Zubehör-Spanneisen 0354003: L = 75 mm


Nach Diagramm: max. Spannkraft 6,5 kN Verschiebekraft F_V 0,98 kN

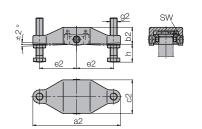
Bei einem Reibungskoeffizienten $\mu = 0,4$ reicht das für eine Werkstückmasse m:

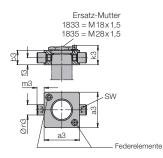

$$m = \frac{F_V}{g * \mu} = \frac{980 \text{ N}}{9.81 * 0.4} = 250 \text{ kg}$$

Zubehör Spanneisen


Anschlussmaße für Sonderspanneisen und Indexierung

Spanneisen-Rohling mit Indexierung


Spanneisen ohne Indexierung Spanneisen mit Druckschraube


Spanneisen ohne Gewinde g1

Doppelspanneisen komplett mit Träger GGG 40

Träger für Doppelspanneisen 42CrV4 vergütet

Elektro-Schwenkspanner	1833	1835	
a	[mm]	75	115
a1	[mm]	125	190
a2	[mm]	138	196
$a3 \pm 0,1$	[mm]	43	55
b	[mm]	16	23
b2	[mm]	28,5	38
$b3 \pm 0,1$	[mm]	16	23
C	[mm]	32	48
c1	[mm]	16	22
c2	[mm]	59	75
c3	[mm]	45	60
Ø d f7	[mm]	25	32
Ø d1 +0,05	[mm]	19,8	31,85
е	[mm]	50	75
e2	[mm]	60	83
f	[mm]	16	25
f1	[mm]	22,5	30
f3	[mm]	7,5	11
g	[mm]	M18×1,5	M28×1,5
g1	[mm]	M10	M16
g2	[mm]	M10	M16
h min max	[mm]	1064	1579
k	[mm]	10	12
Ø k1 +0,1	[mm]	3	6
k3**	[mm]	21,5	29
1	[mm]	21	28
11	[mm]	13	17
Øm	[mm]	24,5	34
m1 +0,05	[mm]	9,8	16
m3	[mm]	9	11
n	[mm]	4	5
Ø n3 g6	[mm]	10	16
r	[mm]	70	100
S	[mm]	52,7	92,3
SW	[mm]	5	8

Bestell-Nr.

Spanneisen mit Druckschraube		0354001	0354003
Masse ca.	[kg]	0,25	0,8
Trägheitsmoment	[kgm²]	0,000320	0,002295
Radialmoment	[Nm]	0,06	0,32
Spanneisen ohne Gewinde g1		3921016	3921017
Masse ca.	[kg]	0,2	0,65
Trägheitsmoment	[kgm²]	0,00018	0,00134
Radialmoment	[Nm]	0,05	0,20
Spanneisen-Rohling		3548901A	3548902A
Masse ca.	[kg]	0,35	0,95
Trägheitsmoment	[kgm ²]	0,00074	0,0035
Radialmoment	[Nm]	0,1	0,5
Werkstoff: Vergütungsstahl 10001	200 N/mm ²		
Doppelspanneisen komplett*		0354131	0354132
Masse ca.	[kg]	0,83	2
Trägheitsmoment	[kg·m ²]	0,00120	0,00765
Träger für Doppelspanneisen		0354141	0354142
Masse ca.	[kg]	0,16	0,46
Ersatz-Mutter		3527014	3527015
Anzugsmoment max.	[Nm]	60	90
Masse ca.	[kg]	0,03	0,05
Metallabstreifer		0341231	0341 231
Zylinderstift für Indexierung		3m6x6	6m6x12
Zymiderstift für maexierung		3301 281	3300325

- * Komplett mit Gewindebolzen und Federelementen
- ** Höhe Anschlagfläche für Federelemente

Horizontale Einbaulage

Der Elektro-Schwenkspanner kann mit dem Zubehör-Spanneisen mit Druckschraube (e) in jeder Einbaulage betrieben werden.

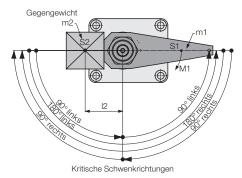
Bei längeren und schwereren Sonderspanneisen wird das zulässige Radialmoment M1* überschritten, was zu Funktionsstörungen und höherem Verschleiß führen kann. Abhilfe:

Spanneisen mit einem Gewichtsausgleich versehen, wie im nebenstehenden Beispiel erläutert.

*siehe Tabelle Seite 3

Spanneisen S1 mit Gewichtsausgleich S2 Einbaulage horizontal

Erforderliches Gegengewicht m2 = $\frac{M1}{12}$


M1 = Moment 1. Ordnung um die Kolbenachse (Abfrage des CAD-Modells)

m2 = Masse des Gegengewichts [kg]

12 = Schwerpunktabstand der Masse m2 [m]

Wichtiger Hinweis

Das zusätzliche Gegengewicht vergrößert natürlich das Trägheitsmoment J um die Kolbenachse, was durch Abfrage des CAD-Modells leicht zu ermitteln ist. Damit der Schwenkantrieb nicht überlastet wird, muss die Schwenkgeschwindigkeit reduziert werden. Die Einstellung ist in der Betriebsanleitung beschrieben.

Änderungen vorbehalten