

Pneumatic swing clamps

for adjustable magnetic sensors, double acting, max. operating pressure 7 bar

Table of contents

1	Description of the product
2	Validity of the documentation
3	Target group of this document
4	Symbols and signal words
5	For your safety
6	Application
7	Installation
8	Start up
9	Maintenance
10	Trouble shooting
11	Technical characteristics
12	Storage
13	Accessory
14	Disposal
15	Declaration of manufacture

1	1	Description of the product
1	2	Validity of the documentation
1	2	This document applies to the following products:
2	2	Pneumatic swing clamps of data sheet J7.201. The following types or part numbers are concerned:
2	2	Clockwise rotation
	2	• 1873-305, 1874-303, 1875-303, 1876-303, 1877-303,
2	2	Counterclockwise rotation
	2	• 1873-405, 1874-403, 1875-403, 1876-403, 1877-403,
5	6	3 Target group of this document
7	7	• Specialists, fitters and set-up men of machines and installations with expert knowledge in pneumatics.
7	7	Qualification of the personnel
7	7	Expert knowledge means that the personnel must
7	7	• be in the position to read and completely understand technical specifications such as circuit diagrams and product-specific drawing documents,
8	8	• have expert knowledge (electric, hydraulic, pneumatic knowledge, etc.) of function and design of the corresponding components.
9		

An **expert** is somebody who has due to its professional education and experiences sufficient knowledge and is familiar with the relevant regulations so that he

- can judge the entrusted works,
- can recognize the possible dangers,
- can take the required measures to eliminate dangers,
- knows the acknowledged standards, rules and guidelines of the technology.
- has the required knowledge for repair and mounting.

4 Symbols and signal words

WARNING

Person damage

Stands for a possibly dangerous situation.
If it is not avoided, death or very severe injuries will result.

CAUTION

Easy injuries / property damage

Stands for a possibly dangerous situation.
If it is not avoided, minor injuries or material damages will result.

Hazardous to the environment

The symbol stands for important information for the proper handling with materials that are hazardous to the environment.
Ignoring these notes can lead to heavy damages to the environment.

Note

This symbol stands for tips for users or especially useful information. This is no signal word for a dangerous or harmful situation.

5 For your safety

5.1 Basic information

The operating instructions serve for information and avoidance of dangers when installing the products into the machine as well as information and references for transport, storage and maintenance.

Only in strict compliance with these operating instructions, accidents and property damages can be avoided as well as trouble-free operation of the products can be guaranteed.

Furthermore, the consideration of the operating instructions will:

- avoid injuries
- reduce down times and repair costs,
- increase the service life of the products.

5.2 Safety instructions

WARNING

Injury by crushing!

Components of the product make a movement while they are in operation.

- This can cause injuries.
- Keep parts of the body and items out of the working area!

CAUTION

Operating pressure of 7 bar not exceed

The maximum operating pressure of 7 bar must not be exceeded.

High forces by pneumatic pressure

With pneumatic pressure very high forces are generated.
The fixture or machine must be in the position to compensate these forces.

NOTE

Qualification of personnel, pneumatic

All works may only be effected by qualified personnel familiar with the handling of hydraulic components.

6 Application

6.1 Intended use

The products are designed exclusively for clamping of work-pieces or as a swivelling stop in industrial/commercial applications, where low clamping forces are sufficient. They must only be operated with compressed air.

The installed magnetic piston allows monitoring of clamping and unclamping position.

In addition, use in compliance with the intended purpose includes:

- Use within the capacity limits specified in the technical data (see data sheet).
- Use as described in this operating manual.
- Compliance with maintenance intervals.
- Qualified and trained personnel for the corresponding activities.
- Mounting of spare parts only with the same specifications as the original part.
- Solely clamping arms may be moved.

6.2 Misapplication

WARNING

Injuries, material damages or malfunctions!

Modifications can lead to weakening of the components, reduction in strength or malfunctions.

- Do not modify the product!

The use of these products is not admitted:

- For domestic use.
- On pallets or machine tool tables in primary shaping and metal forming machine tools.
- In areas for which special guidelines apply, especially installations and machines:
 - For the use on fun fairs and in amusement parks.
 - In food processing or in areas with special hygiene regulations.
 - In mines.
 - In explosive and aggressive environments (e.g. ATEX).
- For other operating and environmental conditions.
 - Higher flow rates than indicated on the data sheet or installation drawing.

Special solutions are available on request!

7 Installation

WARNING

Injury by dropping parts!

Some products have a heavy weight and can cause injury when dropping.

- Transport products professionally.
- Wear personal protection equipment!

Weight specifications see chapter "Technical characteristics".

7.1 Design

This pneumatic clamping element is a pull-type cylinder where a part of the total stroke is used to swing the piston. Thereby the clamping points are free for loading and unloading of the fixture.

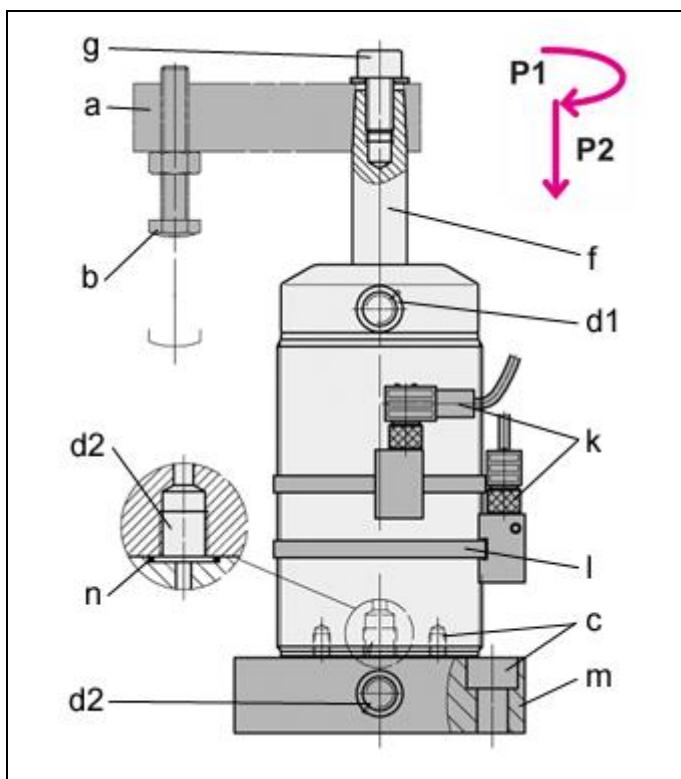


Figure 1: Components

a	Clamping arm (accessory)	i	Hose clamp (accessory)
b	Contact bolt (accessory)	m	Flange- complete ((accessory))
d1	Pneumatic port (clamping - retract)	n	O-ring (accessory flange)
d2	Pneumatic port (unclamping - extend)	c	Fixing possibility
f	Piston with integrated swing mechanism and solenoid	P1	Swing stroke
g	Fixing screw (included in the delivery)	P2	Clamping stroke
d	Magnetic sensor with angle plug (accessory)	r	Metallic wiper (optional, accessory)

7.2 Swing angle and direction

The swing clamps are available with swing angles of 0 ° up to 90 °. "Swing direction cw" means clockwise rotation, looking from above onto the piston - from the unclamped to the clamped position.

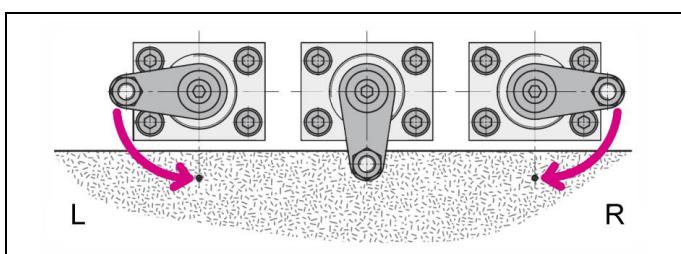


Figure 2: Swing direction
 (L = counterclockwise "ccw", R = clockwise "cw")

7.3 Connection of pneumatic equipment

NOTE

Service unit

Operating of these pneumatic elements has to be effected with an additional service unit in order to guarantee that the clamping elements are supplied with correctly prepared compressed air.

- Connect pneumatic lines to qualifying standards and pay attention to scrupulous cleanliness!

Accessories see also data sheet J 7.400.

Application example

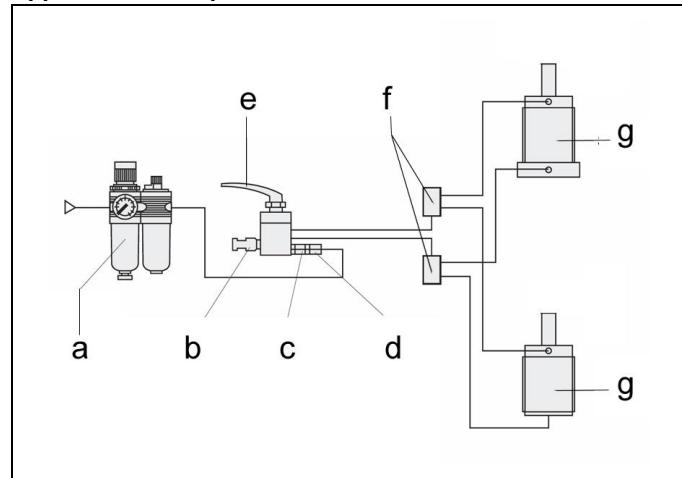


Figure 3: Application example

a	Service unit	e	Manual valve
b	Silencer	f	Connecting block
c	Check valve	g	Pneumatic element
d	Socket end		

NOTE

More details

- See ROEMHELD data sheets A 0.100, F 9.300, F 9.310 and F 9.360.

7.4 Assembly and disassembly of the clamping arm

WARNING

Injury by crushing!

Components of the product make a movement while they are in operation.

- This can cause injuries.
- Keep parts of the body and items out of the working area!

CAUTION

Assembly and disassembly of the clamping arm

- When tightening and untightening the fixing screw, the clamping arm has to be backed up.
- No torques must be introduced into the piston.
- The conical surfaces of the piston and the clamping arm must be clean and grease free!

NOTE

When tightening and untightening the fixing screw, the clamping arm has to be backed up. It is recommended to effect tightening and untightening in the swing range.

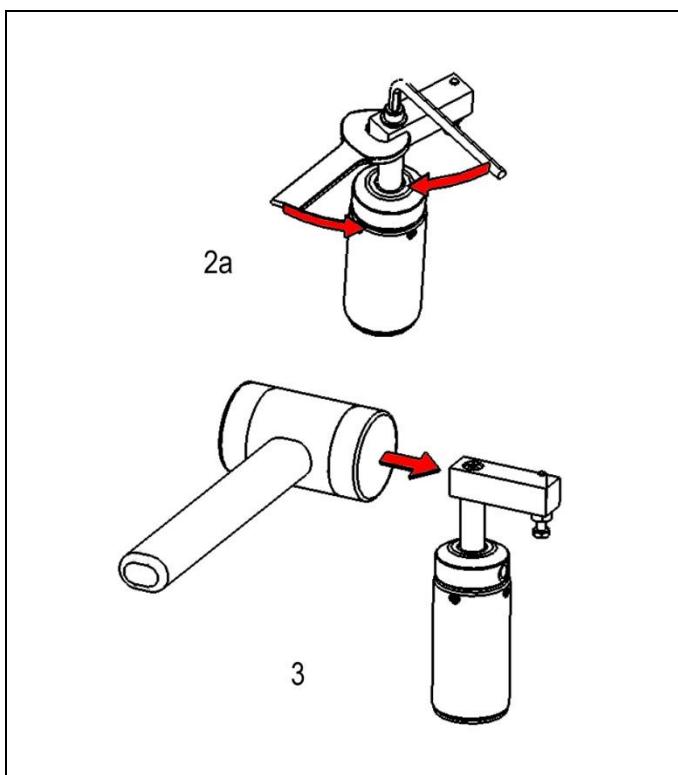


Figure 4: Assembly /disassembly (example)

7.4.1 Assembly of the clamping arm - with pressure

1. Retract piston and pressurise clamping line (port A).
2. Put the clamping arm in the intended clamping position.
3. Fasten fixing screw and hold clamping arm with an Allen key (Fig. Assembly, **Pos. 2a**).
4. Clamp several times.
5. Check if the clamping point is within the clamping stroke.

7.4.2 Assembly of the clamping arm - without pressure

1. Put the clamping arm onto the piston.
2. Move the piston manually to the clamping position.
3. Align clamping arm.
4. Fasten fixing screw and hold clamping arm with an Allen key (Fig. Assembly, **Pos. 2a**).
5. Clamp several times.
6. Check if the clamping point is within the clamping stroke.

NOTE

Tightening torque

Tightening torque of the fixing screw for the clamping arm see technical characteristics.

7.4.3 Disassembly of the clamping arm - without pressure

CAUTION

Damage or functional failure of the piston rod guide

Hard blows may impair the function of the product or lead to failure.

- No direct or indirect blows may be used to loosen the clamping arm.

1. Loosen the fixing screw one revolution. Hold the clamping arm with an Allen key (**Pos. 2a**).
2. Hammer **slightly** onto the front face to loosen the clamping arm (**Pos. 3**).

7.5 Adjustment of contact bolt

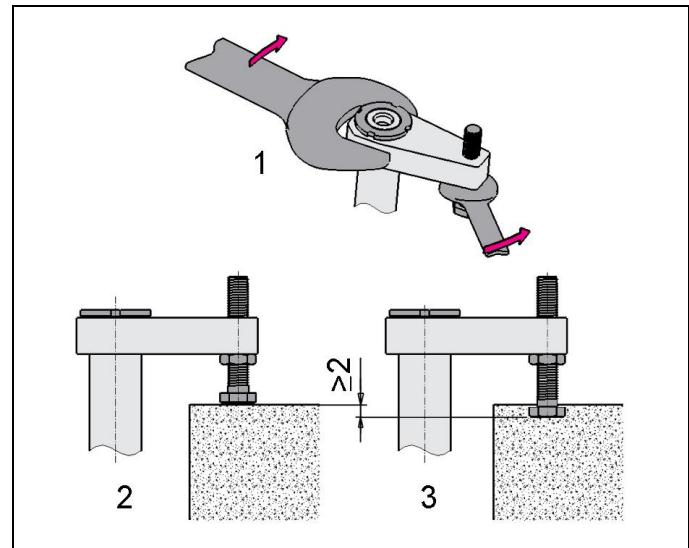


Figure 5: Adjustment of the clamping arm (example)

1. Loosen the lock nut at the contact bolt and completely turn back the contact bolt. (Fig. Adjustment of the clamping arm, **Pos. 1**).
2. Move the clamping arm to the clamping position above the workpiece. (Pay attention to the tolerance of the swing angle)
3. Screw out the contact bolt until it contacts the workpiece. (Fig. Adjustment of the clamping arm, **Pos. 2**).
4. Move the clamping arm back to the unclamping position.
5. Unscrew the contact bolt again by the half of the clamping stroke.
6. Tighten the lock nut at the contact bolt. Hold the clamping arm with an open-ended wrench. (Fig. Adjustment of the clamping arm, **Pos. 1**).

7.5.1 Check adjustment of the contact bolt

1. Move the clamping arm, with throttled flow rate and low pressure to the clamping position onto the workpiece. Pay attention that the contact bolt touches the workpiece only after completion of the swing stroke.
2. Measure and note the distance between clamping arm and upper edge of the workpiece in clamped condition (**Pos. 2**).
3. Unclamp swing clamp again.
4. Unload workpiece out of the fixture.
5. Clamp swing clamp again.
6. Measure the distance as described below item 2. The distance measured now should be at least 2 mm smaller .

8 Start up

⚠ CAUTION

Operating pressure of 7 bar not exceed

The maximum operating pressure of 7 bar must not be exceeded.

- Check tight seating (check tightening torque of the fixing screws, see chapter "Technical characteristics").
- Check tight seating of hydraulic connections (check tightening torque of the hydraulic connections, see chapter "Technical characteristics").
- Start up of position monitoring.

ℹ Note

See operating instructions of the position monitoring.

8.1 Admissible operating pressure

ℹ NOTE

Various Clamps

- The swing clamps are designed for a maximum pressure (see chapter Technical characteristics).
- According to the version of the used clamping arm, the operating pressure must be reduced considerably.
- Please pay attention to the clamping force diagrams on the data sheet.

8.2 Start up of the position monitoring

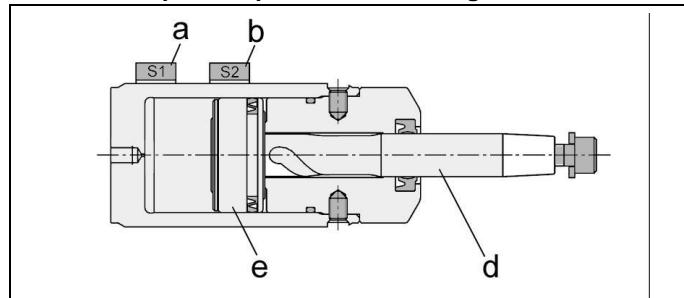


Figure 6: Design

a Magnetic sensor S1 (retracted)	d Piston rod
b Magnetic sensor S2 (extended)	e Magnetic disks

Condition for start up is that the magnetic sensors S1 and S2 are electrically wired as per circuit diagram and a correct supply voltage is available.

The magnetic sensors are fixed with hose clamps at the housing of the swing clamp.

The red point on the magnetic sensor indicates the position of the sensor element.

- Retract piston.
- Displace magnetic sensor S1 in the slot until the yellow LED at the right angle plug is lit. Mark the position of the red point at the slot.
- Continue displacing S1 until the yellow LED is no longer illuminated. Mark the position of the red point at the slot.
- Fasten S1 in the centre of both markings.
- Extend piston.
- Proceed in the same way with S2, so that a signal course as per figure 8 will be obtained..

The following figure shows the principal signal course during extending and retracting the piston (max. = total stroke).

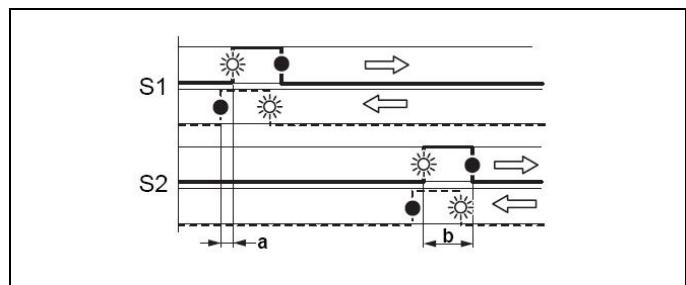


Fig. 7: fundamental signal course

☀ Signal on	a Hysteresis
● Signal off	b Overrunning distance

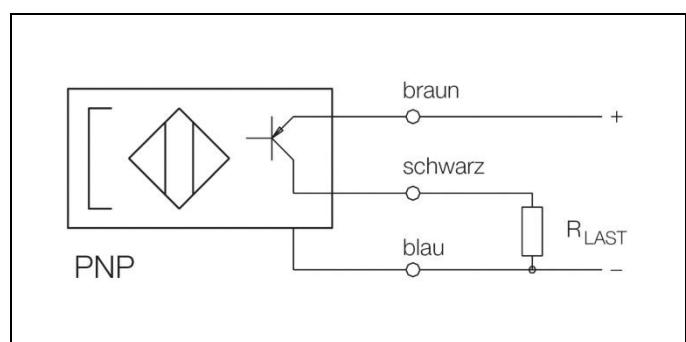


Figure 8: Circuit diagram for PNP (+) magnetic sensor

brown +
blue -
black

8.3 Operation

- Steel parts (e.g. swarf) in the environment of the cylinder can influence the magnetic field and therefore the switching points.
- Install a protection cover at least 30 mm above the magnetic sensors.

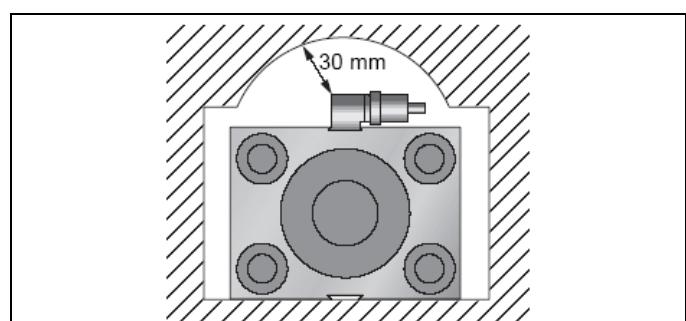


Figure 9: Minimum distance between sensors and covers etc.

8.4 Technical characteristics

8.4.1 Technical data, magnetic sensor

Housing material	PA 12 – GF 30; yellow
Operating voltage UB:	10 - 30 V DC
Residual ripple:	max. 10%
Current load 1 LOAD	200 mA
Current consumption	< 2 mA
Voltage drop (max. load)	< 1.8 V
Switching output	pnp, interlock
Protected against short circuits	Yes
Protection against reverse battery	installed
Switching frequency	1 kHz
Switching hysteresis	< 1 mm
Protection as per DIN 40050	IP 67
Environmental temperature	-25°C to +70°C
Plug connection	M8 x 1 plug
LED	Function display (red)

NOTE

Further technical data with reference to the position monitoring are included in the data sheet.

NOTE

Further information

- For further technical data see ROEMHELD data sheet.

9 Maintenance

WARNING

Burning due to hot surface!

During operation, surface temperatures on the product can exceed 70°C.

- Maintenance and repair work should only be performed in a cooled down condition and/or with protective gloves.

Injury by crushing!

Due to the stored energy, an unexpected start of the product can occur.

- Maintenance works at the product must only be made in de-pressurised mode!
- Keep hands and other parts of the body out of the working area!

9.1 Cleaning

CAUTION

Material damage, damage to moving components

Damage to piston rods, plungers, bolts, etc., as well as wipers and seals can lead to leakage or premature failure!

- Do not use cleaning agents (steel wool or similar) that cause scratches, marks or the like.

Material damage, damage or functional failure

Aggressive cleaning agents can cause damage, especially to seals.

The product must not be cleaned with:

- corrosive or caustic substances or
- organic, solvents such as halogenated or aromatic hydrocarbons and ketones (cellulose thinner, acetone, etc.).

The product must be cleaned at regular intervals, especially the area of the piston or the plunger housing has to be cleaned from swarf and other liquids.

In the case of heavy contamination, the cleaning has to be made in shorter intervals.

9.1.1 Regular checks

- Check tightness of hydraulic connections.
- Check running surfaces of the piston rod if there are marks and scratches. Marks can be an indication for an inadmissible side load of the product.
- Clamping force control by pressure control.
- Check the observance of the maintenance intervals.

9.2 Exchange seal kit

The exchange of the seal kit is made in case of external leakages. For high availability, the seals have to be changed at the latest after 500,000 cycles or 2 years.

The seal kit is available as spare part. An instruction for the exchange of the seal kit is available on request.

NOTE

Seal Kits

- Do not install seal kits which were exposed to light for a longer time.
- Pay attention to the storage conditions (see chapter "Technical characteristics").
- Only use original seals.

10 Trouble shooting

Trouble	Cause	Remedy
Piston rod with clamping arm does not retract	Clamping pressure is not available or too low	Check at the pressure generator, if pressure is available and high enough (minimum pressure: 3 bar)
Swing angle is not completely effected or exceeded (tolerance of end position $\pm 2^\circ$):	Too much clearance in the swing mechanism	Caution ! Repair required by ROEMHELD
	Operating pressure too low	Adjust operating pressure in accordance with the technical characteristics.
Piston rod has too much play:	Guide or helix rod are worn out	Exchange swing clamp, exchange component, if required.
Clamping pressure reduces due to leakages at the swing clamp:	Wear at the seals	Exchange seals

11 Technical characteristics

General characteristics

Types	Maximum operating pressure [bar]	Effective clamping force Pulling force at ... [N]		
		4 bar	5 bar	6 bar
1873 305 1873 405	(as a function of the clamping arm length)	105.5	131.9	158.3
1874 303 1874 403		276.4	345.5	414.6
1875 303 1875 403		422.2	527.7	633.3
1876 303 1876 403		659.7	824.6	989.6
1877 303 1877 403		1050.5	1313.1	1575.8

Types	Seating torque fixing screw of the clamping arm
187X X0X	6 Nm

Weights

Types	Total stroke [mm]	Weight [kg]
1873 305	14.5	0.2
1873 405		
1874 303	18.5	0.3
1874 403		
1875 303	32.0	0.7
1875 403		
1876 303	33.0	0.9
1876 403		
1877 303	41.0	2.1
1877 403		

12 Storage

CAUTION

Damage due to incorrect storage of components

In case of improper storage, the seals can embrittle and resinification of the anti-corrosive oil or corrosion on/in the element can occur.

- Storage in the packaging and moderate environmental conditions.
- The product must not be exposed to direct sunlight, since UV light may cause serious damage to the seals.

ROEMHELD products are treated as standard with a corrosion prevention agent.

This ensures that the products are protected internally for six months from corrosion, when they are stored in dry rooms with a stable temperature.

Extended storage times require treatment with a non-resinifying corrosion prevention agent, and the external surfaces will also require treatment.

13 Accessory

13.1 Selection of the clamping arm

CAUTION

Material damage or functional failure

Use of an incorrectly dimensioned clamp can lead to damage on the product.

- When dimensioning, consider length, mass and the resulting max. operating pressure and flow rate (see data sheet or installation drawing).

When selecting the clamping arm, the corresponding operating pressures as shown in the clamping force diagram (see ROEMHELD data sheet) must not be exceeded. If longer clamping arms will be used, not only the operating pressure but also the flow rate has to be reduced.

13.2 Position monitoring

NOTE

- Position monitoring

NOTE

- See ROEMHELD data sheet.

14 Disposal

Hazardous to the environment

 Due to possible environmental pollution, the individual components must be disposed only by an authorised expert company.

The individual materials have to be disposed as per the existing regulations and directives as well as the environmental conditions.

Special attention has to be drawn to the disposal of components with residual portions of hydraulic fluids. The instructions for the disposal at the material safety data sheet have to be considered.

For the disposal of electrical and electronic components (e.g. stroke measuring systems, proximity switches, etc.) country-specific legal regulations and specifications have to be kept.

15 Declaration of manufacture

Manufacturer

Römheld GmbH Friedrichshütte
Römheldstraße 1-5
35321 Laubach, Germany
Tel.: +49 (0) 64 05 / 89-0
Fax: +49 (0) 64 05 / 89-211
E-mail: info@roemheld.de
www.roemheld.com

Declaration of manufacture of the products

They are designed and manufactured in line with the relevant versions of the directives **2006/42/EC**(EC MSRL) and in compliance with the valid technical rules and standards.

In accordance with EC-MSRL, these products are components that are not yet ready for use and are exclusively designed for the installation in a machine, a fixture or a plant.

According to the pressure equipment directives the products are not to be classified as pressure reservoirs but as pneumatic placing devices, since pressure is not the essential factor for the design, but the strength, the inherent stability and solidity with regard to static or dynamic operating stress.

The products may only be put into operation after it was assessed that the incomplete machine / machine, in which the product shall be installed, corresponds to the machinery directives (2006/42/EC).

The manufacturer commits to transmit the special documents of the products to state authorities on request.

The technical documentation as per appendix VII part B was prepared for the products.

Responsible person for the documentation:
Dipl.-Ing. (FH) Jürgen Niesner, Tel.: +49(0)6405 89-0.

Laubach, 10.03.2022