

Elemento de sujeción en taladros

Ejecución tipo bloque excéntrica, doble efecto, para diámetro del orificio 6,6-13,8 mm, presión máx. de servicio 250 bar

Aplicación

Los elementos de sujeción en taladros patentados son particularmente apropiados para el posicionado y el blocaje de piezas a mecanizar con orificios entre un diámetro de 6,6 y 13,8 mm en la superficie de apoyo.

La pieza a mecanizar se pone directamente sobre el elemento de sujeción en taladros, de manera que las demás superficies estén libres para el mecanizado de 5 lados. Por su construcción estrecha y excéntrica, el elemento de sujeción en taladros puede ser colocado muy cerca del contorno de la pieza a mecanizar.

Según la carga elementos de sujeción suplementarios pueden ser necesarios, ya que la fuerza de sujeción axial es relativamente baja (ver página 3).

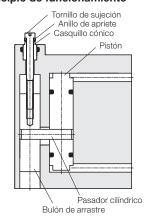
Descripción

En el cuerpo del elemento de sujeción en taladros un cilindro hidráulico doble efecto está instalado. El pistón acciona a través de un pasador cilíndrico el bulón de arrastre, dispuesto de manera excéntrica al borde exterior del cuerpo, en el cual el tornillo de sujeción está atornillado.

El anillo de apriete está centrado sobre un casquillo cónico y mantenido por la cabeza del tornillo de sujeción. El tornillo de sujeción está asegurado por medio de un recubrimiento de la rosca contra desatornillo.

La conexión de la estanqueidad por aire impide la penetración de líquidos y virutas.

Instrucciones importantes


Si líquidos o virutas pueden penetrar, p.ej. en un taladro de sujeción abierto hacia arriba, la estanqueidad por aire debe quedarse conectada. Además la superficie de apoyo templada y el anillo de apriete deben ser soplados con aire comprimido antes de cada operación de blocaje. El anillo de apriete y el tornillo de sujeción son piezas de desgaste y deben ser cambiados después de aprox. 10.000 accionamientos (ver página 3).

La fuerza de tracción axial se transmite con arrastre de fuerza, ya que el anillo de apriete no está perfilado al diámetro exterior. Por eso los orificios de sujeción no deben ser cónicos.

Ventajas

- Blocaje axial en taladros lisos simples
- Profundidad mínima de taladro
- Mecanizado de 5 caras posible
- 3 insertos de sujeción diferentes "Con centraje" "Con compensación" "Sin centraje"
- Elementos suplementarios de centraje no son necesarios
- Precisión de repetición ±0,003 mm (con centraje y compensación)
- Construcción compacta excéntrica
- Superficie de apoyo templada
- Control neumático de apoyo
- Conexión para la estanqueidad del aire
- La alimentación del aceite alternativa por racordaje u orificios taladrados

Principio de funcionamiento

Función de centraje

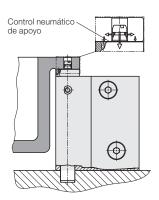
 Elemento de sujeción en taladros con centraje

Tipo 4319 X1

Cono de centraje fijo

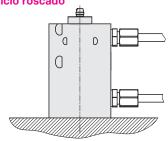
Elemento de sujeción en taladros con compensación

Tipo 4319 X2

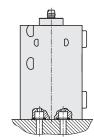

Cono de centraje en una dirección del eje ± 0,2 mm móvil

• Elemento de sujeción en taladros sin centraje

Tipo 4319 X3


Cono de centraje en todas las direcciones del eje ± 0,25 mm móvil

Condiciones de servicio y otros datos ver hoja A 0.100.

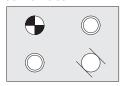


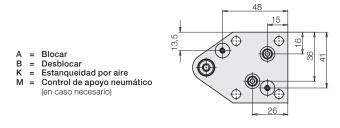
Posibilidades de conexión

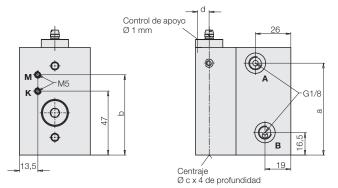
Orificio roscado

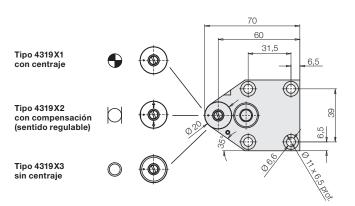
Orificios taladrados

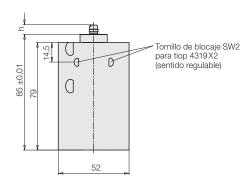
Aplicaciones


• Centraje y blocaje en 1 orificio

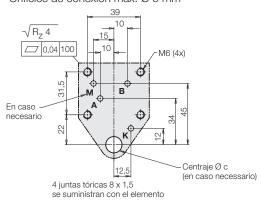

• Centraje y blocaje en 2 orificios




 Centraje y blocaje en más de 2 orificios

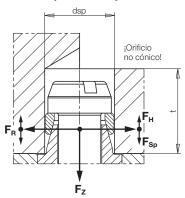


Dimensiones Características técnicas



Dibujo de conexión para conexión adosada

Orificios de conexión máx. Ø 5 mm



Campo de sujeción Ø dsp	[mm]	6,6 - 6,8	9,0 - 9,2	11,0 - 11,3	13,5 – 13,8	
Agujero pasante Ø H13 según DIN EN 20273-m		6,6	9	11	13,5	
para rosca		M6	M8	M10	M12	
Tornillo de sujeción		M4	M5	M6	M6	
Fuerza de tracción máx. (250 bar)	[kN]	3,8	3,8	6,3	6,3	
Fuerza de extensión radial aprox. *)	[kN]	3	3	5	5	
Fuerza de sujeción axial aprox. *)		ver diagrama de la fuerza de sujeción página 3				
Fuerza de retención axial aprox. *) [kN		ver diagrama de la fuerza de sujeción página 3				
Presión máx. de servicio	[bar]	250	250	250	250	
Presión mín. de servicio		50	50	50	50	
Gasto de aceite blocaje/desblocaje	[cm ³]	0,2	0,2	0,3	0,3	
Caudal máx.	[cm ³ /s]	25	25	25	25	
a	[mm]	67,5	67,5	58	58	
b	[mm]	59	59	66	66	
Øс	[mm]	12 ^{H7}	12 ^{H7}	14 ^{H7}	14 ^{H7}	
d	[mm]	7,3	7,3	8,1	8,1	
h	[mm]	7,5	8,5	9,5	11	
Peso aprox.	[kg]	1,65	1,65	1,7	1,7	
Referencia con centraje		431921A066	431921A090	431931A110	431931A135	
con compensación		431922A066	431922A090	431932A110	431932A135	
sin centraje **)		431923A066	431923A090	431933A110	431933A135	
Para conexión adosada:						
Junta tórica 8 x 1,5 (NBR)		3000343	3000343	3000343	3000343	
Tornillo de cierre G 1/8 (con hexágono interior)		3610158	3610158	3610158	3610158	

*) Fuerzas al punto de sujeción y instrucciones importantes ver página 3

Fuerza de sujeción Orificio de sujeción • Piezas de repuesto

Fuerzas en el punto de sujeción

- Fuerza de tracción del tornillo de sujeción ver tabla página 2
- Fuerza radial de extensión del anillo de apriete ver tabla página 2
- $\mathbf{F}_{\mathbf{sp}}$ Fuerza de sujeción axial (fuerza de apoyo) ver diagrama de la fuerza de sujeción
- **F**_H Fuerza de retención axial = fuerza elevadora de la pieza a mecanizar ver diagrama de la fuerza de sujeción

Fuerza de sujeción efectiva F_{sp}

La fuerza de tracción actúa sobre el anillo de apriete, que se extiende sobre el cono de sujeción y se mueve hacia abajo de aprox. 0,2 a 1 mm. Cuando toca el diámetro del orificio, resulta el efecto de un blocaje inclinado sobre la superficie de apoyo del elemento de sujeción en taladros a causa de la fricción por deslizamiento. La fuerza de sujeción axial pues depende del coeficiente de fricción u.

Fuerza de retención axial F_H

El anillo está en contacto con el diámetro del orificio con la fuerza de extensión FR. La fuerza de retención máxima depende del coeficiente de fricción u.

La fuerza de retención de "materiales dulces" (Al) es un poco mas grande que la fuerza de sujeción FSp. Por razones de seguridad, no se debe sobrepasar los valores indicados en el diagrama de la fuerza de sujeción al proyectar.

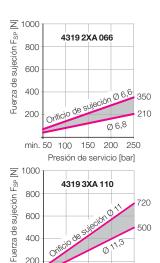
Piezas de repuesto

Campo de sujeciónØ	dsp	[mm]	6,6-6,8	9-9,2	11–11,3	13,5–13,8
Anillo de apriete mín. Ø	*)	[mm]	6,5	8,9	10,9	13,4
Anillo de apriete máx. Ø	**)	[mm]	6,9	9,3	11,4	13,9
Profundidad mín. de orificio	tmin	[mm]	8	9	10	11,5
Referencia (Piezas de repu						
Anillo de apriete			3548815	3548633	3548634	3548639
Anillo de apriete+tornillo de sujeción			0354245	0354246	0354247	0354248
Casquillo de regulación			34101193	34101194	34101195	34101196
*) Estado nuevo **) Diámetro máx. del casquillo de regulación						

Regular el anillo de apriete

Los nuevos elementos de sujeción en taladros están regulados al campo de sujeción pedido. (No ajustar el tornillo de sujeción!)

Después de aprox. 10.000 piezas a mecanizar se debe cambiar, por precaución, el anillo de apriete y el tornillo de sujeción.

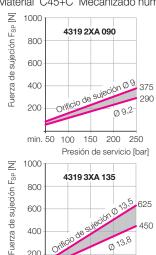

Piezas necesarias:

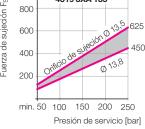
Nuevo anillo de apriete y tornillo de sujeción así como el casquillo de regulación apropiado (ver tabla).

- 1. Desplazar hidráulicamente el elemento de sujeción en taladros en la posición de blocaje.
- 2. Poner el anillo de sujeción sobre el cono de sujeción. Poner atención en la posición correcta del ángulo del cono! (ver dibujo arriba).

- 3. Atornillar el nuevo tornillo de sujeción de manera que aún no toque al anillo de apriete.
- 4. Poner el casquillo de regulación.
- 5. Atornillar el tornillo de sujeción, hasta que el anillo de apriete toca al diámetro interior del casquillo de regulación. Atornillar el tornillo de sujeción sólo ligeramente!
 - (La rosca está asegurada contra desatornillo mediante un recubrimiento Tuflok.)
- 6. Desplazar el elemento de sujeción en taladros a la posición de desblocaje y quitar el casquillo de regulación.

Diagrama de la fuerza de sujeción


min. 50 100 150 200 250


Presión de servicio [bar]

200

Condiciones de medición

Material C45+C Mecanizado húmedo

:Importante!

En el caso de piezas a mecanizar templadas y con orificios de sujeción muy lisas y lubrificadas la fuerza de sujeción puede ser casi cero. Remedio: Prever elementos de sujeción suplementarios, como p.ej. garras giratorias.

B 1.485 / 2-22 S